Efficient removal of organic ligands from supported nanocrystals by fast thermal annealing enables catalytic studies on well-defined active phases.
نویسندگان
چکیده
A simple yet efficient method to remove organic ligands from supported nanocrystals is reported for activating uniform catalysts prepared by colloidal synthesis procedures. The method relies on a fast thermal treatment in which ligands are quickly removed in air, before sintering can cause changes in the size and shape of the supported nanocrystals. A short treatment at high temperatures is found to be sufficient for activating the systems for catalytic reactions. We show that this method is widely applicable to nanostructures of different sizes, shapes, and compositions. Being rapid and effective, this procedure allows the production of monodisperse heterogeneous catalysts for studying a variety of structure-activity relationships. We show here results on methane steam reforming, where the particle size controls the CO/CO2 ratio on alumina-supported Pd, demonstrating the potential applications of the method in catalysis.
منابع مشابه
Activation Strategies for Enhancement the Catalytic Activity of Gold Nanocatalysts
Recent advances in nanoscience have led to the development of numerous methodologiesfor controlled synthesis of mono dispersed nanoparticles and/or nanoclusters via surface stabilization by organic capping ligands. The application of these nanoparticles in catalysis and other fields often requires the removal of organic ligands. It is known that the removal of organic capping agents or or...
متن کاملFast and efficient adsorptive removal of manganese (II) from aqueous solutions using malicorium magnetic nanocomposites
Malicorium supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple,and environmentally benign procedure. The adsorbent was characterized by several methods includingX-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infraredspectroscopy (FT-IR). Then, the potential of malicorium supported Ni0.5Zn0.5Fe2O4 magneticnanoparticles was in...
متن کاملبررسی اثر زمان ماند، دوز ازن و رطوبت نسبی بر کارایی فرایند ازنزنی کاتالیزوری در حذف زایلن از جریان هوای آلوده
Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate), inlet ozone dose and relative humidity on this performanceMethodst...
متن کاملUltrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends
Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) usi...
متن کاملCatalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity
By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 21 شماره
صفحات -
تاریخ انتشار 2015